3y^2+7y-18=

Simple and best practice solution for 3y^2+7y-18= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y^2+7y-18= equation:


Simplifying
3y2 + 7y + -18 = 0

Reorder the terms:
-18 + 7y + 3y2 = 0

Solving
-18 + 7y + 3y2 = 0

Solving for variable 'y'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-6 + 2.333333333y + y2 = 0

Move the constant term to the right:

Add '6' to each side of the equation.
-6 + 2.333333333y + 6 + y2 = 0 + 6

Reorder the terms:
-6 + 6 + 2.333333333y + y2 = 0 + 6

Combine like terms: -6 + 6 = 0
0 + 2.333333333y + y2 = 0 + 6
2.333333333y + y2 = 0 + 6

Combine like terms: 0 + 6 = 6
2.333333333y + y2 = 6

The y term is 2.333333333y.  Take half its coefficient (1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
2.333333333y + 1.361111112 + y2 = 6 + 1.361111112

Reorder the terms:
1.361111112 + 2.333333333y + y2 = 6 + 1.361111112

Combine like terms: 6 + 1.361111112 = 7.361111112
1.361111112 + 2.333333333y + y2 = 7.361111112

Factor a perfect square on the left side:
(y + 1.166666667)(y + 1.166666667) = 7.361111112

Calculate the square root of the right side: 2.713136766

Break this problem into two subproblems by setting 
(y + 1.166666667) equal to 2.713136766 and -2.713136766.

Subproblem 1

y + 1.166666667 = 2.713136766 Simplifying y + 1.166666667 = 2.713136766 Reorder the terms: 1.166666667 + y = 2.713136766 Solving 1.166666667 + y = 2.713136766 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + y = 2.713136766 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + y = 2.713136766 + -1.166666667 y = 2.713136766 + -1.166666667 Combine like terms: 2.713136766 + -1.166666667 = 1.546470099 y = 1.546470099 Simplifying y = 1.546470099

Subproblem 2

y + 1.166666667 = -2.713136766 Simplifying y + 1.166666667 = -2.713136766 Reorder the terms: 1.166666667 + y = -2.713136766 Solving 1.166666667 + y = -2.713136766 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + y = -2.713136766 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + y = -2.713136766 + -1.166666667 y = -2.713136766 + -1.166666667 Combine like terms: -2.713136766 + -1.166666667 = -3.879803433 y = -3.879803433 Simplifying y = -3.879803433

Solution

The solution to the problem is based on the solutions from the subproblems. y = {1.546470099, -3.879803433}

See similar equations:

| x+40= | | -17=x+7 | | 4+2x=3x+12 | | 12+25x=5(5x+3) | | 6[2-2y]=5[2y-2] | | x+45= | | 5(-1+3x)=115 | | 4[4-4k]=-10-16k | | 4x-7x=12-6x | | Y^2-5y-66= | | x+15+x= | | -4(5x-1)=-136 | | -3[x-8]=24 | | -4[r+2]=4[2-4r] | | 15(-42x+40)=15(-8x+244) | | -x-10=5x+62 | | 12x^2-44x=50 | | 2[2+3][y-1]=22 | | 2j+1=5 | | 12x^2-5x-2=0 | | 55=4x+5x-8 | | 3x-(-9)=6 | | 2z+1=15 | | 6[n-1]=2[2n+4] | | 3x-9=-3x-51 | | 3x-(0)=6 | | 4(-4+5a)-7a= | | 7(-1x+6)=-35 | | 2t-1=3(t+7) | | 2y-6=7 | | 3(-4+5a)-8a= | | 2[w-1]+4=4[w+1] |

Equations solver categories